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1 History

The octonions are essentially an eight-dimensional analogue to the complex
numbers. They came about as a result of exploration into the idea of square
roots of negative numbers, which then developed into the idea of using multiple
imaginary axes, going beyond just i.

The first recorded usage of complex numbers is in Girolamo Cardano’s work,
Ars Magna (The Great Art), published in 1545. He was working with various
problems in algebra, and at one point he needed to use

√
−15 to solve the

problem “To divide 10 in two parts, the product of which is 40” – the solution
of which is 5 +

√
−15 and 5−

√
−15. [3, pp. 2–3]

This had mathematicians pondering over square roots of negative numbers,
an entirely new type of number that could not be expressed using the reals. In
his 1637 paper La Geometrie, Rene Descartes called these new quantities the
imaginary numbers [4, p. 6], and Leonard Euler standardised the notation i for√
−1. [5, p. 88]
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The newfound language and notation prompted mathematicians to begin
working with complex numbers in the form a+bi – for a, b ∈ R – and try to find
ways of understanding them and their uses. The rules of complex arithmetic
were first formalised by Rafael Bombelli in 1572 [6, p. 5], and then in the early
1800s, Jean-Robert Argand popularised the idea of describing complex numbers
as points in a plane, and thinking about operations (addition, subtraction,
multiplication, division) as maps on the plane. [7, p. 2]

In 1835, William Rowan Hamilton decided to take a different approach: he
started thinking about treating complex numbers a+ bi as ordered pairs (a, b).
He discovered the rules necessary for operations between complex numbers as
ordered pairs of real numbers, but he suspected that you could take this idea
further, and tried looking into ordered triplets (a, b, c), especially multiplying
them together with a rule that allowed for division by any non-zero element. He
was aiming to invent a three-dimensional algebra that could describe operations
in three-dimensional geometry, in the same way that complex numbers worked
with two-dimensional geometry, as shown by Argand. What he was attempting
was mathematically impossible in three dimensions; however, it was possible
with four. [7, p. 3]

It is said that he was walking along the Royal Canal in Dublin when he had
this epiphany, and carved a single line of calculation under Broome Bridge, now
commemorated by a plaque (photo from Hamilton Year 2005 ):

i2 = j2 = k2 = ijk = −1 [1, p. 145]

Using these three linearly independent imaginaries i, j, k, he defined the set of
quaternions, H, which can be thought of as

H = {a+ bi+ cj + dk : a, b, c, d ∈ R}

analogously to C = {a+ bi : a, b ∈ R}.
With a bit of manipulation, and taking 1 as the multiplicative identity,

you can use the line of working above to come up with all of the rules for
multiplying two distinct elements out of {1, i, j, k}, which in turn gives you all
of the information you need to multiply any two quaternions together.

Hamilton then told his friend, John Graves, about the quaternions, who
asked if you could just keep creating more “imaginaries”. Graves later sent him
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a letter saying that he had come up with a number system called the “octaves”
(later octonions), which allowed you to multiply 8-tuples of real numbers in
a way that also allowed for division, using seven linearly independent square
roots of -1. Though the octonions were discovered in 1843 by Graves, Arthur
Cayley beat him to publication after independently discovering them, calling
them Cayley numbers. [[7, p. 5]; [2, pp. 8–9]]

After this discovery, the octonions faded into obscurity, being somewhat
ahead of their time – people were still struggling with the idea of four-dimensional
spaces1, let alone eight. With higher dimensions unexplored, nobody knew
what to use this number system for. Even now, they are nowhere near as
well-known as their predecessors, the complex numbers C and quaternions H,
since their main uses come up when working in seven and eight dimensions.
Despite this, they are still interesting as a glance into extending familiar number
systems, as one of the lesser-known results of a centuries-long journey into
the world of imaginary numbers, and, more pragmatically, for understanding
higher-dimensional analogues of familiar operations and theorems such as the
three-dimensional cross product and N -square identities.

2 Groundwork

2.1 Definitions

Definition 1 (Octonions [[9, p. 237],[1, p. 150]]). The set of octonions, denoted
O, is a number system that extends the quaternions, in the same way as
quaternions extend the complex numbers, and the complex numbers extend
the reals. It forms an eight-dimensional vector space over R, with the standard
basis {1, e1, . . . , e7}.

Using the same ideas as before for defining C and H, we can write

O = {a0 + a1e1 + · · ·+ a7e7 : a0, . . . , a7 ∈ R}

Remark. Since octonions aren’t used very often, the conventions are fairly
loose – for example, the standard basis is written by John Conway and Derek
Smith as {1, i0, . . . , i6} [2, p. 65] and by Tevian Dray and Corinne Manogue2 as
{1, i, j, k, kl, jl, il, l} [6, p. 14]. I’ve chosen to stick with {1, e1, . . . , e7}.

The above definition considers the octonions as a vector space, but in order
to work with them properly, we need to give them more structure, considering
O as a real normed division algebra.

Definition 2 (Algebra [1, p. 149]). An algebra is a vector space A over a field
K combined with a bilinear product – i.e. not only are operations for addition
of vectors and scalar multiplication defined, but you can also multiply vectors
together, and this is distributive over addition and scalar multiplication.

1This much is evident from attempted explanations from around the time (see [8, pp. 4-6])!
2The notation used in their book came about from a recursive construction of each real

normed division algebra – starting from C := R+Ri, then H := C+Cj, and then taking a new
imaginary l such that l2 = −1, with i, j, k, l linearly independent, and setting O := H + Hl.
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Definition 3 (Division algebra). A division algebra is an algebra A with no
zero divisors (nonzero elements a, b ∈ A such that ab = 0) [1, p. 149]:

∀a, b ∈ A, ab = 0 =⇒ a = 0 or b = 0

Definition 4 (Normed division algebra [1, p. 149]). A normed division algebra
is an algebra A which is also a normed vector space (A, ‖ · ‖) wherein the
composition law holds [2, p. 68]:

∀a, b ∈ A, ‖ab‖ = ‖a‖‖b‖

Remark. Note that this definition doesn’t specify that A is a division algebra,
as this property is implied: using separation of points for norms (‖x‖ = 0 ⇐⇒
x = 0), we get

ab = 0 =⇒ ‖a‖‖b‖ = ‖ab‖ = ‖0‖ = 0

=⇒ ‖a‖ = 0 or ‖b‖ = 0

=⇒ a = 0 or b = 0

There are only four real normed division algebras (that is, normed division
algebras over R) containing the multiplicative identity 1, which are R,C,H, and
O [1, p. 150]. For these, there is a standard definition for the norm ‖ · ‖, which
requires a little more groundwork:

Definition 5 (Conjugate). For a ∈ R,

a∗ = a

For a+ bi ∈ C (a, b ∈ R),
(a+ bi)∗ = a− bi

For a+ bi+ cj + dk ∈ H (a, b, c, d ∈ R) [9, p. 232],

(a+ bi+ cj + dk)∗ = a− bi− cj − dk

For a0 +
∑7

k=1 akek ∈ O (a0, . . . , a7 ∈ R) [9, p. 237],(
a0 +

7∑
k=1

akek

)∗
= a0 −

7∑
k=1

akek

Using this conjugate, we define the norm by ‖a‖2 = aa∗ [1, p. 154] so, in
keeping with non-negativity of norms, ‖a‖ =

√
aa∗. This agrees with our usual

definition for the modulus | · | of real and complex numbers, since (for a, b ∈ R),

‖a‖2 = a2

‖a+ bi‖2 = a2 + b2
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In fact, we can show by explicit calculation that the norms for quaternions and
octonions are of a similar form, i.e. sums of four and eight squares respectively
(multiplication of octonions will be properly defined later):

‖a+ bi+ cj + dk‖2 = (a+ bi+ cj + dk)(a− (bi+ cj + dk))

= a2 − (bi+ cj + dk)2

= a2 − b2i2 − c2j2 − d2k2 − bc(ij + ji)− cd(jk + kj)− bd(ik + ki)

= a2 + b2 + c2 + d2∥∥∥∥∥a0 +

7∑
k=1

akek

∥∥∥∥∥
2

=

(
a0 +

7∑
k=1

akek

)(
a0 −

7∑
k=1

akek

)

= a20 −
7∑

i=1

7∑
j=1

aiajeiej

= a20 −
7∑

k=1

a2ke
2
k

=

7∑
k=0

a2k

(In the sum
∑7

i=1

∑7
j=1 aiajeiej , we have aiajeiej = −ajaiejei as will be shown

later, so all terms with i 6= j cancel, leaving only the terms with i = j.)

Definition 6 (Real and imaginary part). For a ∈ A, where A is a real normed
division algebra, we define

real part of a: Re(a) =
1

2
(a+ a∗)

imaginary part of a: Im(a) =
1

2
(a− a∗)

We use the same notation to denote sets of imaginary numbers:

imaginary complex numbers: Im(C) = {bi : b ∈ R}
imaginary quaternions: Im(H) = {bi+ cj + dk : b, c, d ∈ R}

imaginary octonions: Im(O) =

{
7∑

k=1

akek : a1, . . . , a7 ∈ R

}
Remark. Note that the definition of an imaginary part conflicts with what we’re
used to for complex numbers – if we take a, b ∈ R, then Im(a + bi) is usually
taken to be b, but using the above definition gives the following:

Im(a+ bi) =
1

2
(a+ bi− (a− bi)) = bi

Our usual convention for complex numbers cannot be used for quaternions or
octonions, as the imaginary part cannot be expressed by a single real number,
so we change this to Im(a+ bi) = bi for consistency across all four algebras.
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2.2 Multiplication of octonions [1, pp. 150-151]

We have multiplication of the standard basis given by the following Cayley table:

1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7

e1 e1 −1 e4 e7 −e2 e6 −e5 −e3
e2 e2 −e4 −1 e5 e1 −e3 e7 −e6
e3 e3 −e7 −e5 −1 e6 e2 −e4 e1

e4 e4 e2 −e1 −e6 −1 e7 e3 −e5
e5 e5 −e6 e3 −e2 −e7 −1 e1 e4

e6 e6 e5 −e7 e4 −e3 −e1 −1 e2

e7 e7 e3 e6 −e1 e5 −e4 −e2 −1

There are 480 permutations of e1, . . . , e7, giving 480 possible Cayley tables.
I’ve stuck with the convention where e1e2 = e4 (this equation can be used to
generate the whole table, as will be shown later).

For now, we need to ensure that this table gives us all the information we
need to multiply together any two octonions. From the definition of an algebra,
we know the product is bilinear, meaning that for a, b, c ∈ O; r1, r2 ∈ R:

(r1a+ r2b)c = r1ac+ r2bc

c(r1a+ r2b) = r1ca+ r2cb

In other words, multiplication of octonions is distributive over multiplication by
reals and addition. We can use this fact to multiply together octonions – if we
let a0, . . . , a7, b0, . . . , b7 ∈ R, and a = a0 +

∑7
k=1 akek, b = b0 +

∑7
k=1 bkek, then

ab =

(
a0 +

7∑
k=1

akek

)(
b0 +

7∑
k=1

bkek

)

= a0b0 + a0

7∑
k=1

bkek + b0

7∑
k=1

akek +

(
7∑

k=1

akek

)(
7∑

k=1

bkek

)

= a0b0 +

7∑
k=1

(a0bk + b0ak)ek +

7∑
i=1

7∑
j=1

aibjeiej

You can then work out each eiej using the table, and hence find the product of
any two octonions.

However, the table is fairly unwieldly, and nigh impossible to remember.
It helps to find some way to summarise the rules for octonion multiplication,
just as the rules for quaternion multiplication can be summarised in one line –
unfortunately, it isn’t quite as simple.
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3 Constructing the Cayley table

There are several approaches to formulating rules for multiplication – I’ve found
that the two sets of rules below work well:

3.1 Index cycling and doubling [1, p. 151]

Starting from e1e2 = e4, the entire Cayley table in the previous section can be
generated using the following rules (thinking of the indices i, j, k as elements of
Z/7Z = {1, . . . , 7}).

e2k = −1

i 6= j =⇒ eiej = −ejei (anticommutativity)

eiej = ek =⇒ ei+1ej+1 = ek+1 (index cycling)

eiej = ek =⇒ e2ie2j = e2k (index doubling)

3.2 Quaternion triplets [2, p. 75]

As stated before, the rules for multiplication for i, j, k ∈ H are

i2 = j2 = k2 = ijk = −1

and from this, you can work out how to multiply all of the quaternions.
You can apply a similar process using the so-called “quaternion triplets”

(i, j, k) = (1, 2, 4), (2, 3, 5), (3, 4, 6), (4, 5, 7), (5, 6, 1), (6, 7, 2), (7, 1, 3)

for which ei, ej , ek ∈ O behave similarly to i, j, k ∈ H , i.e.

e2i = e2j = e2k = (eiej)ek = ei(ejek) = −1

However, this construction isn’t enough by itself – octonions are non-associative,
so we don’t know how to get the value of eiej out of (eiej)ek = −1, since we
can’t do much with ((eiej)ek)ek = −ek. We need alternativity, which allows us
to turn this into eiej = ek; and for other octonions that go beyond the basis
vectors, we need to prove even more properties to avoid gruelling calculations.

4 Properties of Octonions

“A · BC = AB · C = ABC if A,B,C be quaternions, but not so,
generally, with your octaves.” – Hamilton, July 1844, in a letter to
Graves [2, p. 9]

Though the octonions are non-associative, they satisfy a weaker version of
this property, known as alternativity.
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Proposition 1 (Alternative [1, pp. 149-150]). O is alternative – one definition
of this is that ∀a, b ∈ O:

a(ab) = (aa)b

a(bb) = (ab)b

Corollary 1.1 (Flexible). ∀a, b ∈ O, a(ba) = (ab)a

Proof. The following proof is elaborated from the sketch proof given by Robert
Wisbauer for alternative algebras in general [10, p. 14]:

Let c ∈ O and consider (a + b)2c. Using distributivity and alternativity of
octonionic multiplication, we get the following:

(aa)c+ (ab)c+ (ba)c+ (bb)c = (a2 + ab+ ba+ b2)c

= ((a+ b)(a+ b))c

= (a+ b)((a+ b)c)

= (a+ b)(ac+ bc)

= a(ac) + b(ac) + a(bc) + b(bc)

= (aa)c+ b(ac) + a(bc) + (bb)c

We can subtract (aa)c+ (bb)c from both sides, and then set c = a:

(ab)c+ (ba)c = b(ac) + a(bc)

(ab)a+ (ba)a = b(aa) + a(ba) (setting c = a)

= (ba)a+ a(ba) (alternativity)

(ab)a = a(ba)

Proposition 2 (Alternativity extended [6, p. 18] (4.17)). As Tevian Dray put
it, “alternativity extends to products with conjugates”:

a(a∗b) = (aa∗)b = ‖a‖2b
(ba)a∗ = b(aa∗) = ‖a‖2b

Except for the cases above, we generally find a(bc) 6= (ab)c for a, b, c ∈ O.
In fact, John Conway describes the octonions as “strongly non-associative” [2,
p. 89], in that they satisfy the following property:

Lemma 3. Let r ∈ O. Then

∀x, y ∈ O, x(ry) = (xr)y ⇐⇒ r ∈ R

Proof. If we start with r ∈ R, then multiplying by r is simply scalar multiplication
(when considering O as a vector space over R) – this is commutative and
associative, so for any octonions x, y, we have x(ry) = r(xy) = (rx)y = (xr)y.
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For the other direction, I have adapted the following proof from [2, p. 90]
(changing notation for consistency and elaborating on a couple of steps):

Let r = r0 +
∑7

k=1 rkek, with r0, . . . , r7 ∈ R, and assume that all octonions
x, y satisfy x(ry) = (xr)y. Then we have

x(ry) = x

((
r0 +

7∑
k=1

rkek

)
y

)
= x(r0y + r1e1y + · · ·+ r7e7y) (distributivity)

= r0xy + r1x(e1y) + · · ·+ r7x(e7y) (distributivity)

(xr)y = r0xy + r1(xe1)y + · · ·+ r7(xe7)y

So for x(ry) = (xr)y to be true ∀x, y ∈ O, we need to have
∑7

k=1 rkx(eky) =∑7
k=1 rk(xek)y. Since rk ∈ R, this means that the following statement has to

be satisfied ∀x, y ∈ O; k = 1, . . . , 7:

rkx(eky) = rk(xek)y

Assume that this is true for all x, y ∈ O. Then we can set k = 1, x = e2, y = e3:

e2(e1e3) = e2e7 = −e6 = e4e3 = −(e2e1)e3

So r1e2(e1e3) = r1(e2e1)e3 = −r1e2(e1e3) (first equivalence from the assumption
that x(ry) = (xr)y, second by the direct calculation above), meaning r1 = −r1,
so r1 = 0.

Using the index cycling identity from earlier (eiej = ek =⇒ ei+1ej+1 =
ek+1) and anticommutativity (i 6= j =⇒ eiej = −ejei) to deal with the case
eiej = −ek, we can get

∀n ∈ N, eiej = ±ek =⇒ ei+nej+n = ±ek+n

We then use this on the equation e2(e1e3) = −(e2e1)e3 to get

e2+n(e1+ne3+n) = −(e2+ne1+n)e3+n

meaning that for each ek, k = 1, . . . , 7, we can find a pair of octonions x, y that
gives x(eky) = −(xek)y. As above, rk = −rk, so rk = 0 for k = 2, . . . , 7. Thus,

r = r0 +

7∑
k=1

0ek = r0 ∈ R

Proposition 4 (Conjugate of product [6, p. 17](4.9)). For a, b ∈ O,

(ab)∗ = b∗a∗

Remark. This is also true for any other real normed division algebra.
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Proposition 5 (Inverse [6, p. 17](4.11)). Let a ∈ O \ {0}. Given the norm
defined by ‖a‖2 = aa∗ = a∗a, and that the multiplicative inverse of a is a−1

such that aa−1 = a−1a = 1, we have

a−1 =
a∗

‖a‖2

Proof. This can easily be verified:

a

(
a∗

‖a‖2

)
=

aa∗

‖a‖2
=
‖a‖2

‖a‖2
= 1(

a∗

‖a‖2

)
a =

a∗a

‖a‖2
=
‖a‖2

‖a‖2
= 1

Remark. Again, this is true for any other real normed division algebra.

Proposition 6 (Latin square property [11, p. 45]). The nonzero octonions
satisfy the Latin square property – that is, if a, b ∈ O\{0}, then ∃!x, y ∈ O such
that ax = b = ya.

Proof. For existence, we can take x = a−1b and y = ba−1:

ax =
a(a∗b)

‖a‖2

=
(aa∗)b

‖a‖2
(extended alternativity)

= b (aa∗ = ‖a‖2)

ya =
(ba∗)a

‖a‖2

=
b(a∗a)

‖a‖2
(extended alternativity)

= b (a∗a = ‖a‖2)

For uniqueness, say that ∃x, x′ ∈ O such that ax = ax′ = b. Then

0 = ax− ax′ = a(x− x′) (distributivity)

Since O is a division algebra, a(x − x′) = 0, a 6= 0 =⇒ x − x′ = 0, so x = x′.
Analogously, if ∃y, y′ ∈ O such that ya = y′a = b, then (y− y′)a = 0, so y = y′.

Hence, x and y are the only octonions that satisfy ax = b = ya.

Remark. A Latin square is a matrix wherein every element appears exactly once
in each row and column - since this property is satisfied, the Cayley table for
the non-zero octonions will be an (infinitely large) Latin square.

Also, if this property is assumed to be true, then it implies that there are no
zero divisors, meaning that a division algebra can also be defined as an algebra
satisfying the Latin square property. [12, p. 51]
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We can use the Latin square property and inverse to finally define a notion of
division on our division algebra O. It’s important to note that this isn’t a single
operation, as with real numbers and complex numbers - we can’t define a

b for
octonions, or even for quaternions, since this requires commutativity. However,
we can define two operations:

Definition 7 (Left and right division). The uniqueness in the Latin square
property allows us to define left \ and right / division:

a(a\b) = b

(b/a)a = b

Combining this with the x and y given in the proof of the Latin square property,
we can give explicit formulae for these operations as follows:

a\b =
a∗b

‖a‖2

b/a =
ba∗

‖a‖2

Proposition 7 (Anticommutative [6, p. 20](4.37)). For a, b ∈ Im(O) - that is,
imaginary octonions, so where the real part is 0 - we have

ab = −ba

Proof. We know anticommutativity holds for distinct ei, ej , i.e. eiej = −ejei.
If we let a =

∑7
k=1 akek, b =

∑7
k=1 bkek, with ak, bk ∈ R, then

ab =

7∑
i=1

7∑
j=1

aibjeiej

=

7∑
i=1

7∑
j=1

aibj(−ejei) (anticommutativity)

= −
7∑

j=1

7∑
i=1

bjaiejei

= −ba

Lemma 8 (
√
−1). In O, there are infinitely many square roots of −1.

The square roots of −1 aren’t limited to ±ek; in fact, for any a ∈ Im(O), all
you need for a2 = −1 to hold is ‖a‖ = 1:(

7∑
k=1

akek

)2

=

7∑
k=1

a2ke
2
k = −

7∑
k=1

a2k = −‖a‖

This works in other real normed division algebras as well (so there are no square
roots of −1 in R, since the imaginary part is always 0; the only square roots in
C are ±i; and in H you have any bi+ cj + dk satisfying b2 + c2 + d2 = 1).
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5 Uses of octonions

Many of the uses of octonions require a lot of background knowledge in other
areas of mathematics or physics, and as such cannot be included here. However,
there are a couple of applications that follow from the introduction above.

There is an interesting observation to be made with both of the examples
presented here: they don’t involve anything to do with division algebras in
their formulation, but the octonions are still behind the scenes, lending some
structure to what seems overly convoluted at first glance.

5.1 Seven-dimensional cross product

Definition 8 (Dot product [13, p. 698]). The dot product on Rn is a map
taking x, y ∈ Rn to x · y ∈ R, defined by

x · y = (x1, . . . , xn) · (y1, . . . , yn) =

n∑
k=1

xkyk

Definition 9 (Euclidean norm [13, p. 698]). For x = (x1, . . . , xn) ∈ Rn,

|x| =
√
x · x =

√√√√ n∑
k=1

x2k

Definition 10 (Cross product [13, p. 698]). A cross product is a map taking
x, y ∈ Rn to x×y ∈ Rn satisfying the following conditions for α, β ∈ R;x, y, z ∈
Rn:

bilinearity: (αx+ βy)× z = α(x× z) + β(y × z)
z × (αx+ βy) = α(z × x) + β(z × y)

orthogonality: x · (x× y) = (x× y) · y = 0

magnitude: |x× y|2 = |x|2|y|2 − (x · y)2

Cross products on Rn only exist for n = 0, 1, 3, 7 (here R0 = {0} = Im(R)),
corresponding to Im(A) for real normed division algebras A [6, pp. 20-21] – and
we can use a similar sort of process to find a cross product in each case.3

If we have a = (a1, . . . , an),b = (b1, . . . , bn) ∈ Rn, then we consider these as
elements a, b ∈ Im(A):

case a b

a,b ∈ R, so a, b ∈ Im(C) a1i b1i

a,b ∈ R3, so a, b ∈ Im(H) a1i+ a2j + a3k b1i+ b2j + b3k

a,b ∈ R7, so a, b ∈ Im(O)
∑7

k=1 akek
∑7

k=1 bkek

3Both sources used for this subsection ([13], [6]) state that cross products only exist for
n = 3, 7, and don’t include the cases n = 0, 1; a little working from the definition above shows
that the zero map is technically a cross product on R (and in fact, the only possibility), and
it works trivially for n = 0. The zero map fails the magnitude condition for n > 1.
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Then a cross product can be calculated using complex/quaternionic/octonionic
multiplication, restricted to the imaginary part (i.e. you calculate Im(ab)).

In R3, we’ve learnt the formula for the cross product as follows:

(a1, a2, a3)× (b1, b2, b3) = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)

This corresponds to the above definition – taking a = a1i + a2j + a3k and
b = b1i+ b2j + b3k ∈ Im(H), we get the following [6, pp. 20–21]:

Im(ab) = Im(−(a1b1 + a2b2 + a3b3) + (a2b3 − a3b2)i+ (a3b1 − a1b3)j + (a1b2 − a2b1)k)

= (a2b3 − a3b2)i+ (a3b1 − a1b3)j + (a1b2 − a2b1)k

The case n = 7 is unfamiliar, but it is straightforward enough to find using
the same method. Let a = (a1, . . . , a7),b = (b1, . . . , b7) ∈ R7 correspond to

a =
∑7

k=1 akek and b =
∑7

k=1 bkek respectively. We can then use octonionic
multiplication restricted to Im(O) to define a cross product a× b:

Im(ab) = ab− Re(ab)

=

7∑
i=1

7∑
j=1

aibjeiej +

7∑
k=1

akbk

=

7∑
k=1

xkek

where x1, . . . , x7 ∈ R are found by explicit calculation. Then the following is a
cross product in R7 [6, pp. 20–21]:

a× b = (x1, . . . , x7)

Remark. The above cross product in R7 is anticommutative (just like in R3):

a× b = −b× a

This ties in to the fact that imaginary octonions anticommute (ab = −ba).

5.2 Eight squares theorem

In short, this theorem states that the product of two numbers that are each the
sum of eight squares is also a sum of eight squares.

No one mathematician can be credited with its discovery: although C. F.
Degen published this theorem in 1818, he failed to specify some of the signs.
Then around 1844, Graves, Cayley, and J. R. Young all came up with the
same formulation of the theorem (up to notation) [14, pp. 164–165], which is
recorded in Volume III of the Proceedings of the Royal Irish Academy as follows
[8, p. 527]:
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(s′2 + t′2 + u′2 + v′2 + w′2 + x′2 + y′2 + z′2)(s2 + t2 + u2 + v2 + w2 + x2 + y2 + z2)

= (ss′ + tt′ + uu′ + vv′ + ww′ + xx′ + yy′ + zz′)2

+ (st′ − ts′ + uv′ − vu′ + wx′ − xw′ + yz′ − zy′)2

+ (su′ − us′ + vt′ − tv′ + yw′ − wy′ + xz′ − zx′)2

+ (sv′ − vs′ + tu′ − ut′ + wz′ − zw′ + xy′ − yx′)2

+ (sw′ − ws′ + xt′ − tx′ + uy′ − yu′ + zv′ − vz′)2

+ (sx′ − xs′ + tw′ − wt′ + yv′ − vy′ + zu′ − uz′)2

+ (sy′ − ys′ + zt′ − tz′ + vx′ − xv′ + wu′ − uw′)2

+ (sz′ − zs′ + ty′ − yt′ + vw′ − wv′ + ux′ − xu′)2

Here we have an equation with far too many terms to remember and an
unclear structure, but as with the seven-dimensional cross product, we can use
octonions to make some sense of it.

If a0, . . . , a7 ∈ Z, then taking a = a0 +
∑7

k=1 akek ∈ O and using the
definition for the norm ‖ · ‖ on O, we get

‖a‖2 =

7∑
k=0

a2k

so ‖a‖2 is the sum of eight square numbers.
The eight squares theorem is equivalent to the composition law for octonions

with integer coefficients, i.e. for a, b ∈ O, ‖a‖2‖b‖2 = ‖ab‖2: ‖a‖2‖b‖2 is a
product of two sums of eight squares, and ‖ab‖2 is a sum of eight squares,
so using octonionic multiplication to explicitly calculate the product ab gives
the above formulation (up to changes in notation) – although it is still fairly
complicated to set out rules for multiplying octonions, it gives a far simpler way
of stating this theorem.

Analogous theorems exist corresponding to the other three real normed
division algebras – using ‖x‖2‖y‖2 = ‖xy‖2 for x, y ∈ R,C,H gives the following
theorems (where a, b, . . . , h ∈ R) [2, p. 77]:

• For a, b ∈ R:

a2b2 = ‖a‖2‖b‖2

= ‖ab‖2

= (ab)2

• For a+ bi, c+ di ∈ C:

(a2 + b2)(c2 + d2) = ‖a+ bi‖2‖c+ di‖2

= ‖(a+ bi)(c+ di)‖2

= (ac− bd)2 + (ad+ bc)2
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• For a+ bi+ cj + dk, e+ fi+ gj + hk ∈ H:

(a2 + b2 + c2 + d2)(e2 + f2 + g2 + h2)

= ‖a+ bi+ cj + dk‖2‖e+ fi+ gj + hk‖2

= ‖(a+ bi+ cj + dk)(e+ fi+ gj + hk)‖2

= (ae− bf − cg − dh)2 + (af + be+ ch+ dg)2

+ (ag − bh+ ce+ df)2 + (ah+ bg + cf + de)2

5.2.1 Generalisation

In general, an N -square identity is

(x21 + · · ·+ x2N )(y21 + · · ·+ y2N ) = z21 + · · ·+ z2N

where z1, . . . , zN are functions of x1, . . . , xN , y1, . . . , yN in the form

zk =

N∑
i=1

N∑
j=1

aijxiyj such that aij ∈ {−1, 0, 1}

There is a direct link between the values of N for which these identities
exist and the dimensions of normed division algebras. Clearly if there were a
normed division algebra with dimension N /∈ {1, 2, 4, 8}, then there would be
a corresponding N -square identity by writing out the composition law in full;
and if there were an N -square identity with N /∈ {1, 2, 4, 8}, it could be used to
find a composition law for an N -dimensional real normed division algebra.

6 Conclusion

The octonions came about as part of an exploration into working out how many
‘imaginaries’ could be invented, as opposed to trying to solve an existing problem
– they weren’t as useful as existing number systems from the outset, and still
have a reputation of being fairly odd and unused. There are several applications
beyond the scope of this essay: the study of octonions has been combined
with other areas, including projective geometry, number theory and integers
(extending the concept of Gaussian integers), eigenvalue problems, and topology
[6]. They also come up in theoretical physics, especially supersymmetric string
theory, but most of us could get by without ever knowing of them.

However, they are still interesting in terms of seeing just how far you can
extend the idea of complex numbers, and working with a structure that doesn’t
behave like most of the ones we encounter. Some have high hopes – Tevian Dray
believes that the octonions “will ultimately be seen as the key to understanding
the basic building blocks of nature”[6, p. 2] – but for now, though indispensable
for understanding some higher-dimensional problems, the octonions remain a
mathematical curiosity, and as John Baez eloquently puts it:

“Octonions rock!” [15]
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